久久ER99热精品一区二区-久久精品99国产精品日本-久久精品免费一区二区三区-久久综合九色综合欧美狠狠

新聞中心

EEPW首頁 > 嵌入式系統 > 設計應用 > 基于DSP的數字移相器-變壓變頻器模塊的設計與實現

基于DSP的數字移相器-變壓變頻器模塊的設計與實現

作者: 時間:2016-12-15 來源:網絡 收藏


  

本文引用地址:http://cqxgywz.com/article/201612/330473.htm

  圖5 三相逆變橋


  ① 功率管IGBT的選取
  系統要求直流輸入Vdc最大60V,電流最大10A,輸出頻率最高100Hz,IGBT開關頻率最高3.3kHz(載波比N=33)。根據系統要求,本設計選用FairChild公司FGA25N120AND型IGBT,參數為VCES=1200V,IC=20A,trr=235ns。
  ② 無感阻容吸收RC的選取
  RC選取如下:無感電阻R1~R6= 100Ω/5WΩ,無感電容C1~C6=1μF/630V。
  ③ LC濾波的設計(無源濾波)
  逆變輸出三相電壓Va、Vb、Vc經LC濾波后,以得到平滑的正弦波,分別接三相阻性負載(7Ω),負載連接方式為星形連接。LC原則上只允許基波(中心頻率)通過。
  本設計要求輸出頻率為50~100Hz,可計算得LC=1.01×10-5~2.53×10-6。
  圖6中,濾波LC的值由經驗值和實際實驗中比較確定,權衡最小值和最大值,最終選取LA~LC=0.98mH,CA~CC=2μF/500V±5%。

  

  圖6 LC濾波


  本設計中,LC濾波為無源濾波,雖然結構簡單,成本低,但是有一個缺點:只能有一個中心頻率,當輸出頻率改變時,中心頻率不能跟隨變化,使輸出波形稍有畸變。若采用有源濾波器,滿足不同頻率范圍的輸出,而波形畸變可以減小到最小,但是相應的成本則會增加。
  本設計中無源濾波雖然在不同頻率時使波形有些畸變,但是可以滿足系統輸出的要求。
  系統控制模塊的設計

  1 驅動電路的設計
  在本設計中Buck電路和三相逆變橋的驅動開關頻率分別為10kHz,和3.3 kHz(最大),中小功率IGBT,采用此芯片作為驅動芯片滿足系統設計的要求。
  ① Buck電路驅動的設計
  圖7為TLP250光耦驅動電路。圖中,光耦芯片TLP250供電電壓+15V,輸出IO=+1.5A,在中功率電路中可以直接驅動IGBT,使用TLP250時應在管腳8和5間連接一個0.1μF的陶瓷電容來穩定高增益線性放大器的工作,提供的旁路作用失效會損壞開關性能,電容和光耦之間的引線長度不應超過1cm。

  

  圖7 TLP250驅動IGBT


  保護端為過壓、過流保護輸出端口,一旦過壓、過流,保護模塊將輸出高電平并且保持,禁止TLP250輸出脈沖,直到故障解除后復位。
  本設計開關頻率為10kHz,三極管BD237/238(NPN/PNP),VCBO=100V,集電極峰值電流Icm=6A(tP《5ms),完全可以達到要求。
  R3、IGBT的門極之前,加一小電阻(一般為10~20Ω),用以改善IGBT的開關波形,降低高頻噪聲。DSP的PWM輸出經過上述TLP250光耦電路后的波形輸出見圖8。

  

  圖8 Buck單元PWM經過光耦后的波形輸出(×10)


  可以看出,推挽后的電容C2為加速開通和關斷作用;與C3并聯穩壓二極管產生恒定的5.1V反壓,當PWM輸出高電平,IGBT的CE兩端電壓差為8~9V,使IGBT導通;當PWM輸出低電平,IGBT的E極的5.1V反壓可以保證IGBT可靠關斷。
  ② 三相逆變橋SPWM驅動的設計
  TLP250光耦驅動能力比較大(Io=±1.5A)可以直接驅動中功率IGBT,本文已在上節作了詳細說明,在此不再贅述,具體驅動電路如圖9所示。

  

  圖9 TLP250光耦直接驅動IGBT


  系統啟動后,設置輸出調制正弦波頻率為50Hz(±0.01Hz),死區時間4.0μs時的SPWM經過74HC244N緩沖驅動后波形如圖10所示,死區時間如圖11所示,以上橋臂1(PWM1)和下橋臂4(PWM2)為例,上下對稱,其中CH1通道觀測PWM1,CH2通道觀測PWM2。

  

  圖10 EVA事件管理器輸出的SPWM波經過光耦驅動后的SPWM波形



評論


技術專區

關閉