久久ER99热精品一区二区-久久精品99国产精品日本-久久精品免费一区二区三区-久久综合九色综合欧美狠狠

新聞中心

EEPW首頁 > 嵌入式系統 > 設計應用 > 透過Linux內核看無鎖編程

透過Linux內核看無鎖編程

作者: 時間:2012-05-21 來源:網絡 收藏

1105/*Double-checkwithlockheld。*/

1106if(p->real_parent!=p->parent){

1107__ptrace_unlink(p);

1108//TODO:isthissafe?

1109p->exit_state=EXIT_ZOMBIE;

……

1120}

1121write_unlock_irq(tasklist_lock);

1122}

……

1127}

如果將write_lock_irq放置于1103行之前,鎖的范圍過大,鎖的負載也會加重,影響效率;如果將加鎖的代碼放到判斷里面,且沒有1106行的代碼,程序會正確嗎?在單核情況下是正確的,但在雙核情況下問題就出現了。一個非主進程在一個CPU上運行,正準備調用exit退出,此時主進程在另外一個CPU上運行,在子進程調用release_task函數之前調用上述代碼。子進程在exit_notify函數中,先持有讀寫鎖tasklist_lock,調用forget_original_parent。主進程運行到1104處,由于此時子進程先持有該鎖,所以父進程只好等待。在forget_original_parent函數中,如果該子進程還有子進程,則會調用reparent_thread(),將執行p->parent=p->real_parent;語句,導致兩者相等,等非主進程釋放讀寫鎖tasklist_lock時,另外一個CPU上的主進程被喚醒,一旦開始執行,繼續運行將會導致bug。

嚴格的說,Double-checkedlocking不屬于無鎖的范疇,但由原來的每次加鎖訪問到大多數情況下無須加鎖,就是一個巨大的進步。同時從這里也可以看出一點端倪,開發者為了降低鎖沖突率,減少等待時間,提高運行效率,一直在持續不斷的進行改進。

原子操作可以保證指令以原子的方式執行——執行過程不被打斷。提供了兩組原子操作接口:一組針對于整數進行操作,另外一組針對于單獨的位進行操作。中的原子操作通常是內聯函數,一般是通過內嵌匯編指令來完成。對于一些簡單的需求,例如全局統計、引用計數等等,可以歸結為是對整數的原子計算。

1。Lock-free應用場景一——SpinLock

SpinLock是一種輕量級的同步方法,一種非阻塞鎖。當lock操作被阻塞時,并不是把自己掛到一個等待隊列,而是死循環CPU空轉等待其他線程釋放鎖。Spinlock鎖實現代碼如下:

清單4。spinlock實現代碼

staticinlinevoid__preempt_spin_lock(spinlock_t*lock)

{

……

do{

preempt_enable();

while(spin_is_locked(lock))

cpu_relax();

preempt_disable();

}while(!_raw_spin_trylock(lock));

}

staticinlineint_raw_spin_trylock(spinlock_t*lock)

{

charoldval;

__asm____volatile__(

xchgb%b0,%1

:=q(oldval),=m(lock->lock)

:0(0):memory);

returnoldval>0;

}

匯編語言指令xchgb原子性的交換8位oldval(存0)和lock->lock的值,如果oldval為1(lock初始值為1),則獲取鎖成功,反之,則繼續循環,接著relax休息一會兒,然后繼續周而復始,直到成功。

對于應用程序來說,希望任何時候都能獲取到鎖,也就是期望lock->lock為1,那么用CAS原語來描述_raw_spin_trylock(lock)就是CAS(lock->lock,1,0);

如果同步操作總是能在數條指令內完成,那么使用SpinLock會比傳統的mutexlock快一個數量級。SpinLock多用于多核系統中,適合于鎖持有時間小于將一個線程阻塞和喚醒所需時間的場合。

pthread庫已經提供了對spinlock的支持,所以用戶態程序也能很方便的使用spinlock了,需要包含pthread。h。在某些場景下,pthread_spin_lock效率是pthread_mutex_lock效率的一倍多。美中不足的是,內核實現了讀寫spinlock鎖,但pthread未能實現。

2。Lock-free應用場景二——Seqlock

手表最主要最常用的功能是讀時間,而不是校正時間,一旦后者成了最常用的功能,消費者肯定不會買賬。計算機的時鐘也是這個功能,修改時間是小概率事件,而讀時間是經常發生的行為。以下代碼摘自2。4。34內核:

清單5。2。4。34seqlock實現代碼

443voiddo_gettimeofday(structtimeval*tv)

444{

……

448read_lock_irqsave(xtime_lock,flags);

……

455sec=xtime。tv_sec;

456usec+=xtime。tv_usec;

457read_unlock_irqrestore(xtime_lock,flags);

……

466}

468voiddo_settimeofday(structtimeval*tv)

469{

470write_lock_irq(xtime_lock);

……

490write_unlock_irq(xtime_lock);

491}

不難發現獲取時間和修改時間采用的是spinlock讀寫鎖,讀鎖和寫鎖具有相同的優先級,只要讀持有鎖,寫鎖就必須等待,反之亦然。

2。6內核中引入一種新型鎖——順序鎖(seqlock),它與spinlock讀寫鎖非常相似,只是它為寫者賦予了較高的優先級。也就是說,即使讀者正在讀的時候也允許寫者繼續運行。當存在多個讀者和少數寫者共享一把鎖時,seqlock便有了用武之地,因為seqlock對寫者更有利,只要沒有其他寫者,寫鎖總能獲取成功。根據lock-free和時鐘功能的思想,內核開發者在2。6內核中,將上述讀寫鎖修改成了順序鎖seqlock,代碼如下:

清單6。2。6。10seqlock實現代碼

staticinlineunsignedread_seqbegin(constseqlock_t*sl)

{

unsignedret=sl->sequence;

smp_rmb();

returnret;

}

staticinlineintread_seqretry(constseqlock_t*sl,unsignediv)

{

smp_rmb();

return(iv1)|(sl->sequence^iv);

}

staticinlinevoidwrite_seqlock(seqlock_t*sl)

{

spin_lock(sl->lock);

++sl->sequence;

smp_wmb();

linux操作系統文章專題:linux操作系統詳解(linux不再難懂)

linux相關文章:linux教程




關鍵詞: 編程 內核 Linux 透過

評論


相關推薦

技術專區

關閉