淺析應用于車載的無線射頻識別系統設計案例
第2步:信息交換本設計采用探測射頻信號強度大小的方法來確定OBU是否進入服務區,經探測信號強度大于最大信號的1/2時,收發雙方實現無線握手,此時認為OBU已經進入服務區。在此階段中,所有幀必須帶有OBU的私有鏈路標識,并實施差錯控制。對于OBU上下行的判斷可以通過ID號來判斷是否屬于同一個系統,不是同一個系統的ID號的OBU從記錄中自動刪除。OBU上報信息時采用跳頻機制,隨機選擇所處服務區的某一固定信道進行握手通信,防止發生信道堵塞。
第3步:釋放連接同樣采用探測信號強度小于最大強度的1/2時,認為車子已經離站。RSU與OBU完成所有應用后,刪除和鏈路標識,發出專用通信鏈路釋放指令,由連接釋放計時器根據應用服務確認釋放本次連接。
4 OBU與BSS通訊流程的開發
通訊協議依據開放系統互聯體系結構七層協議模型建立了三層的簡單協議結構,即物理層、數據鏈路層和應用層。
1)物理層 物理層主要是通信信遭標準,由于目前國際上尚未形成關于433 MHz短距離無線通訊統一的標準,各種標準定義的物理層也不盡相同,如表1所示。圖6為曼徹斯特編碼方式。


2)數據鏈路層 數據鏈路層控制著OBU與BSS之間的信息交換過程,對數據鏈路連接的建立和釋放,數據幀的定義與幀同步,幀數據傳送的控制、容錯控制、數據鏈路層控制和鏈路連接的參數交換等作了規定。數據傳輸以數據幀傳輸進行,如圖7所示。
3)應用層 應用層制定標準的用戶功能程序,定義各路應用之間通信消息的格式,提供開放的消息接口,供其他數據庫或應用程序調用。
5 結束語
本系統是基于數字通信原理、利用集成單芯片窄帶超高頻收發器構建的無線識別系統。闡述了該無線射頻識別系統基本工作原理和硬件設計思路,并給出了程序設計方案的流程圖。從低功耗、高效識別和實用角度設計適用于車載的射頻識別標簽。測試結果表明,本系統在復雜路面狀況(繁忙路面)的條件下可實現300m范圍內有效識別,視距條件下可達到500 m范圍有效識別。
本文所設計的射頻識別系統采用TI低功耗系列的MSP430微控制器,是TI公司專門針對電池供電設備低功耗所設計。射頻芯片也為TI公司CC1020,集成度高,可實現體積小、功耗低、易于安裝,適用于建設車輛免停車監測與監控系統。測試結果顯示在復雜路面狀況(繁忙路面)可實現300 m范圍內有效果識別,視距情況可達到500 m范圍內識別。















評論