圖解觸摸屏的電磁干擾問題
開發具有觸摸屏人機界面的移動手持設備是一項復雜的設計挑戰,尤其是對于投射式電容觸摸屏設計來說更是如此,它代表了當前多點觸摸界面的主流技術。投射式 電容觸摸屏能夠精確定位手指輕觸屏幕的位置,它通過測量電容的微小變化來判別手指位置。在此類觸摸屏應用中,需要考慮的一個關鍵設計問題是電磁干擾 (EMI)對系統性能的影響。干擾引起的性能下降可能對觸摸屏設計產生不利影響,本文將對這些干擾源進行探討和分析。
本文引用地址:http://cqxgywz.com/article/174828.htm投射式電容觸摸屏結構
典型的投射式電容傳感器安裝在玻璃或塑料蓋板下方。圖1所示為雙層式傳感器的簡化邊視圖。發射(Tx)和接收(Rx)電極連接到透明的氧化銦錫 (ITO),形成交叉矩陣,每個Tx-Rx結點都有一個特征電容。Tx ITO位于Rx ITO下方,由一層聚合物薄膜或光學膠(OCA)隔開。如圖所示,Tx電極的方向從左至右,Rx電極的方向從紙外指向紙內。

圖1:傳感器結構參考。
傳感器工作原理
讓我們暫不考慮干擾因素,來對觸摸屏的工作進行分析:操作人員的手指標稱處在地電勢。Rx通過觸摸屏控制器電路被保持在地電勢,而Tx電壓則可變。變化的 Tx電壓使電流通過Tx-Rx電容。一個仔細平衡過的Rx集成電路,隔離并測量進入Rx的電荷,測量到的電荷代表連接Tx和Rx的“互電容”。
傳感器狀態:未觸摸
圖2顯示了未觸摸狀態下的磁力線示意圖。在沒有手指觸碰的情況下,Tx-Rx磁力線占據了蓋板內相當大的空間。邊緣磁力線投射到電極結構之外,因此,術語“投射式電容”由之而來。

圖2:未觸摸狀態下的磁力線。
傳感器狀態:觸摸
當手指觸摸蓋板時,Tx與手指之間形成磁力線,這些磁力線取代了大量的Tx-Rx邊緣磁場,如圖3所示。通過這種方式,手指觸摸減少了Tx-Rx互電容。 電荷測量電路識別出變化的電容(△C),從而檢測到Tx-Rx結點上方的手指。通過對Tx-Rx矩陣的所有交叉點進行△C測量,便可得到整個面板的觸摸分 布圖。
圖3還顯示出另外一個重要影響:手指和Rx電極之間的電容耦合。通過這條路徑,電干擾可能會耦合到Rx。某些程度的手指-Rx耦合是不可避免的。

圖3:觸摸狀態下的磁力線。
專用術語
投射式電容觸摸屏的干擾通過不易察覺的寄生路徑耦合產生。術語“地”通常既可用于指直流電路的參考節點,又可用于指低阻抗連接到大地:二者并非相同術語。 實際上,對于便攜式觸摸屏設備來說,這種差別正是引起觸摸耦合干擾的根本原因。為了澄清和避免混淆,我們使用以下術語來評估觸摸屏干擾。
Earth(地):與大地相連,例如,通過3孔交流電源插座的地線連接到大地。
Distributed Earth(分布式地):物體到大地的電容連接。
DC Ground(直流地):便攜式設備的直流參考節點。
DC Power(直流電源):便攜式設備的電池電壓。或者與便攜式設備連接的充電器輸出電壓,例如USB接口充電器中的5V Vbus。
DC VCC(直流VCC電源):為便攜式設備電子器件(包括LCD和觸摸屏控制器)供電的穩定電壓。
Neutral(零線):交流電源回路(標稱處在地電勢)。
Hot(火線):交流電源電壓,相對零線施加電能。
LCD Vcom耦合到觸摸屏接收線路
便攜式設備觸摸屏可以直接安裝到LCD顯示屏上。在典型的LCD架構中,液晶材料由透明的上下電極提供偏置。下方的多個電極決定了顯示屏的多個單像素;上 方的公共電極則是覆蓋顯示屏整個可視前端的連續平面,它偏置在電壓Vcom。在典型的低壓便攜式設備(例如手機)中,交流Vcom電壓為在直流地和 3.3V之間來回震蕩的方波。交流Vcom電平通常每個顯示行切換一次,因此,所產生的交流Vcom頻率為顯示幀刷新率與行數乘積的1/2。一個典型的便 攜式設備的交流Vcom頻率可能為15kHz。圖4為LCD Vcom電壓耦合到觸摸屏的示意圖。

圖4:LCD Vcom干擾耦合模型。
接地電阻相關文章:接地電阻測試方法
電荷放大器相關文章:電荷放大器原理 電容式觸摸屏相關文章:電容式觸摸屏原理 接地電阻測試儀相關文章:接地電阻測試儀原理 脈寬調制相關文章:脈寬調制原理 手機充電器相關文章:手機充電器原理












評論