久久ER99热精品一区二区-久久精品99国产精品日本-久久精品免费一区二区三区-久久综合九色综合欧美狠狠

新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 光伏逆變器拓撲結構及設計思路

光伏逆變器拓撲結構及設計思路

作者: 時間:2010-11-20 來源:網絡 收藏

本文引用地址:http://cqxgywz.com/article/180223.htm

  這里標準的應用是使用三相全橋電路。考慮到直流母線電壓會達到1000v,那開關器件就必須使用1200v的。而我們知道,1200v功率器件的開關速度會比600v器件慢很多,這就會增加損耗,影響效率。對于這種應用,一個比較好的替代方案是使用中心點箝位(npc=neutral point clamped)的(見圖8)。這樣就可以使用600v的器件取代1200v的器件。

  


  圖8 三相無變壓器npc光伏原理圖

  為了盡量降低回路中的寄生電感,最好是把對稱的雙boost電路和npc逆變橋各自集成在一個模塊里。

  (1) 雙boost模塊技術參數(見圖9)

  


  圖9 flowsol-npb—對稱雙boost電路

  ●雙boost電路都是由mosfet(600v/45 mω)和sic二極管組成;

  ●旁路二極管主要是當輸入超過額定負載時,旁路boost電路,從而改善整體效率;

  ●模塊內部集成溫度檢測電阻。

  (2) npc逆變橋模塊的技術參數(見圖10)

  


  圖10 flowsol-npi -npc逆變橋

  ●中間換向環節由75a/600v的igbt和快恢復二極管組成;

  ●上下高頻切換環節由mosfet(600v/45 mω)組成;

  ●中心點箝位二極管由sic二極管組成;

  ●模塊內部集成溫度檢測電阻。

  對于這種,關于模塊的要求基本類似于前文提到的單相逆變模塊,唯一需要額外注意的是,無論是雙boost電路還是npc逆變橋,都必須保證dc+,dc-和中心點之間的低電感

  有了這兩個模塊,就很容易更高功率輸出光伏。例如使用兩個雙boost電路并聯和三相npc逆變橋就可以得到一個高效率的10kw的。而且這兩個模塊的管腳設計充分考慮了并聯的需求,并聯使用非常方便。圖 11是雙boost模塊并聯和三相npc逆變輸出模塊布局圖。

  


  圖11 雙boost模塊并聯和三相npc逆變輸出模塊布局圖

  針對1000v直流母線電壓的,npc逆變器是目前市場上效率最高的。圖12比較了npc模塊(mosfet+igbt)和使用1200v的igbt半橋模塊的效率。

  


  圖12 npc逆變橋輸出效率(實線)和半橋逆變效率(虛線)比較

  根據仿真結果,npc逆變器的歐效可以達到99.2%,而后者的效率只有96.4%。npc拓撲結構的優勢是顯而易見的。

  7 下一代拓撲的設計介紹

  目前混合型h橋(mosfet+igbt)拓撲已經取得了較高的效率等級。而下一代的光伏逆變器,將會把主要精力集中在以下性能的改善:

  (1) 效率的進一步提高;

  (2) 無功功率補償;

  (3) 高效的雙向變換模式。

  7.1 單相光伏逆變器拓撲結構

  對于單相光伏逆變器,首先討論如何進一步提高混合型h橋拓撲的效率(見圖13)。

  在圖13中,上橋臂igbt的開關頻率一般設定為電網頻率(例如50hz),而下橋臂的mosfet則工作在較高的開關頻率下,例如16khz,來實現輸出正弦波。仿真顯示,這種逆變器拓撲在2kw額定功率輸出時,效率可以達到99.2%。由于mosfet內置二極管的速度較慢,因此mosfet不能被用在上橋臂。

  


  圖13 光伏逆變器的發展-混合型

  由于上橋臂的igbt工作在50hz的開關頻率下,實際上并不需要對該支路進行濾波。因此對電路拓撲進行優化,可以得到圖14所示的發射極開路型拓撲。這種拓撲的優點是只有有高頻電流經過的支路才有濾波電感,從而減小了輸出濾波電路的損耗。

  


  圖14 改進的無變壓器上橋臂發射極開路型拓撲

  目前vincotech公司已經有標準的發射極開路型igbt模塊產品,型號是flowsol0-bi open e (p896-e02),如圖15所示。

  


  圖15 flowsol0-bi-open e (p896-e02)

  技術參數:

  (1) 升壓電路采用mosfet(600v/45mω)和sic二極管組成;

  (2) 旁路二極管主要是當輸入超過額定負載時,旁路boost電路,從而改善逆變器整體效率;

  (3) h橋的上橋臂采用igbt(600v/75a)和sic二極管,下橋臂采用mosfet(600v/45 mω);

  (4) 模塊內部集成溫度檢測電阻。

  下面再來分析一下圖14所示的發射極開路型拓撲。當下橋臂的mosfet工作時,與上橋臂igbt反并聯的二極管卻由于濾波電感的作用沒有工作,這樣就可以在上橋臂也使用mosfet,在輕載時提高逆變器的效率。仿真結果顯示,在2kw額定功率輸出時,這種光伏逆變器的歐效可以提高0.2%,從而使效率達到99.4%。在實際的應用場合中,這種拓撲對效率的提高會更多,因為仿真結果是在假定芯片結溫125℃的情況下得到的,但由于mosfet體積較大,且光伏逆變器經常工作在輕載情況下,mosfet芯片結溫遠遠低于125℃,因此實際工作時mosfet的導通阻抗rds-on將比仿真時的數值要低,損耗相應也會更小。

  如何解決無功功率的問題呢?這種電路拓撲處理無功功率的唯一方法就是使用fred-fet,但這些器件的導通阻抗rds-on通常都很高。另一個缺點是其反向恢復特性較差,影響無功補償和雙向變換時的性能。但是在某些特殊應用中,如果必須通過無功功率來測量線路阻抗或者保護某些元器件,那么圖16所示拓撲將可以滿足以上要求。



評論


相關推薦

技術專區

關閉