理解功率 MOSFET 的電流
基于封裝限制的電流是測試的實際工作的最大電流,因此,在數據表中,寄生二極管的電流通常也用這個值表示。
脈沖漏極電流
脈沖漏極電流在功率MOSFET的數據表中表示為IDM,對于這個電流值,許多工程師不明白它是如何定義的。本文引用地址:http://cqxgywz.com/article/178462.htm
通常,功率MOSFET也可以工作在飽和區,即放大區恒流狀態。如果功率MOSFET穩態工作在可變電阻區,此時,對應的VGS的放大恒流狀態的漏極電流遠遠大于系統的最大電流,因此在導通過程中,功率MOSFET要經過Miller平臺區,此時Miller平臺區的VGS的電壓對應著系統的最大電流。然后Miller電容的電荷全部清除后,VGS的電壓才慢慢增加,進入到可變電阻區,最后,VGS穩定在最大的柵極驅動電壓,Miller平臺區的電壓和系統最大電流的關系必須滿足功率MOSFET的轉移工作特性或輸出特性。
也就是,對于某一個值的VGS1,在轉移工作特性或輸出特性的電流為IDM1,器件不可能流過大于IDM1的電流,轉移工作特性或輸出特性限制著功率MOSFET的最大電流值。
這也表明,數據表中功率MOSFET脈沖漏極電流額定值IDM對應著器件允許的最大的VGS,在此條件下,器件工作在飽和區,即放大區恒流狀態時,器件能夠通過的最大漏極電流,同樣,最大的VGS和IDM也要滿足功率MOSFET的轉移工作特性或輸出特性。
另外,最大的脈沖漏極電流IDM還要滿足最大結溫的限制,IDM工作在連續的狀態下,功率MOSFET的結溫可能會超出范圍。在脈沖的狀態下,瞬態的熱阻小于穩態熱阻,可以滿足最大結溫的限制。
因此IDM要滿足兩個條件:(1) 在一定的脈沖寬度下,基于功率MOSFET的轉移工作特性或輸出特性的真正的單脈沖最大電流測量值;(2)在一定的脈沖寬度下,基于瞬態的熱阻和最大結溫的計算值。數據表通常取二者中較小的一個。
功率MOSFET的數據表后面通常列出了瞬態的熱阻的等效圖。
因為VGS限定的漏極的電流,單純的考慮IDM對于實際應用沒有太多的參考價值,因為實際的應用中,柵極的驅動電壓通常小于最大的額定電壓。同樣的,在實際的柵極驅動電壓下,單純的考慮電流也沒有意義,而是考慮最大漏極電流的持續時間。
IDM和實際的應用最相關的狀態就是系統發生短路,因此,在系統控制器的柵驅動電壓下,測試短路時最大漏極電流的持續時間。通常在設計過程中,使系統短路保護時間小于1/3~1/2的上述的持續時間,這樣才能使系統可靠。
事實上,對于大電流,在導通狀態下或關斷的過程,由于芯片內部的不平衡或其他一些至今還沒有理論可以解釋的原因,即使芯片沒有超過結溫,也會產生損壞。
因此,在實際的應用中,要盡量的使短路保護的時間短,以減小系統短路最大沖擊電流的沖擊。具體方法就是減小短路保護回路的延時,中斷響應的時間等。
在不同的柵級電壓下測量短路電流,測試波形如圖2所示,采用的功率MOSFET為AOT266。圖2(a):VGS電壓為13V,短路電流達1000A,MOSFET在經過47μs后電流失控而損壞;圖2(b):VGS電壓為8V,短路電流僅為500A,MOSFET在經過68μs后電流失控而損壞。電流測試使用了20:1的電流互感器,因此電流為200A/格。

圖2 AOT266短路測試波形
可以的看到,VGS =13V,最大電流為1000A,持續的時間為47μs;VGS =8V,最大電流為500A,持續的時間為68μs。
雪崩電流
雪崩電流在功率MOSFET的數據表中表示為IAV,雪崩能量代表功率MOSFET抗過壓沖擊的能力。在測試過程中,選取一定的電感值,然后將電流增大,也就是功率MOSFET開通的時間增加,然后關斷,直到功率MOSFET損壞,對應的最大電流值就是最大的雪崩電流。
在數據表中,標稱的IAV通常要將前面的測試值做70%或80%降額處理,因此它是一個可以保證的參數。一些功率MOSFET供應商會對這個參數在生產線上做100%全部檢測,因為有降額,因此不會損壞器件。
注意:測量雪崩能量時,功率MOSFET工作在UIS非鉗位開關狀態下,因此功率MOSFET不是工作在放大區,而是工作在可變電阻區和截止區。因此最大的雪崩電流IAV通常小于最大的連續的漏極電流值ID。
采用的電感值越大,雪崩電流值越小,但雪崩能量越大,生產線上需要測試時間越長,生產率越低。電感值太小,雪崩能量越小。目前低壓的功率MOSFET通常取0.1mH,此時,雪崩電流相對于最大的連續的漏極電流值ID有明顯的改變,而且測試時間比較合適范圍。
基爾霍夫電流相關文章:基爾霍夫電流定律













評論